电动调节阀的流量特性直接影响系统的控制质量和稳定性,气动调节阀质量好,所以需要正确选择。
电动调节阀流量特性分理想流量特性和工作流量特性。一般制造厂所提供的流量特性是理想流量特性,而实际应用需要的则是工作流量特性。由于压降比S小于1,工作流量特性上凸。因此,广西壮族自治气动调节阀,在选择调节阀流量特性时,应先考虑选择工作流量特性。然后,根据实际应用选择理想流量特性。在生产中常用的理想流量特性是线性、等百分比和快开特性。而快开特性主要用于双位控制及程序控制,因此调节阀流量特性的选择通常是指如何合理选择线性和等百分比理想流量特性。
在实际使用时,调节阀总是安装在工艺管路系统中,调节阀前后的压差是随着管路系统的阻力而变化的。因此,选择调节阀的流量特性时,不但要依据过程特性,还应结合系统的配管情况来考虑。
(1)根据过程特性,选择阀的工作流量特性。常规控制器的控制规律是线性的,控制器的参数整定后希望能适应一定的工作范围,不需要经常调整。这就要求广义对象是线性的,气动调节阀供应商,即在遇到负荷、阀前压力变化或设定值变动时,广义对象的特性基本保持不变。因此,从自动控制系统的角度看,要求调节阀工作特性的选取原则是使整个广义对象具有线性特性,即在广义对象中,除调节阀外其余部分的特性(变送器特性、并过程特性)为线性时,应选用线性工作流量特性的调节阀(即Kv为常数);如果变送器特性为线性,而过程特性的放大系数瓦是随操纵变量的增加而减小时,则调节阀应选用等百分比工作流量特性。总之,当广义对象(除调节阀外)具有非线性特性时,调节阀应该能够克服它的非线性影响而使广义对象接近为线性特性。
在调节阀内流动的液体常常出现闪蒸和气蚀两种现象。它们的发生不但影响口径的选择和计算,而且将导致严重的噪声、振动、材质的破坏等。在这种情况下,调节阀的工作寿命会大大缩短,对此有必要加以详细阐述。
正常情况下,作为液体状态的介质,流入、流经、流出调节阀时均保持液态。闪蒸作为液体状态的介质,流入调节阀时是液态,在流经调节阀中的缩流处时流体的压力低于气化压力Pvapor,液态介质变成气态介质,并且它的压力不会再回复到气化压力之上,流出调节阀时介质一直保持气态。其压力变化曲线如图7(2)所示。
闪蒸就象一种喷沙现象,它作用在阀体和管线的下游部分,给调节阀和管道的内表面造成严重的冲蚀,同时也降低了调节阀的流通能力。
气蚀作为液体状态的介质,流入调节阀时是液态,在流经调节阀中的缩流处时流体的压力低于气化压力,液态介质变成气态介质,随后它的压力又回复到气化 压力Pvapor之上,后在流出调节阀前介质又变成液态。可以根据一些现象来初步判断气蚀的存在,当气蚀开始 时它会发出一种嘶嘶声,当气蚀发展到完全稳定时,调节阀中会发出嘎嘎的声音,就象有碎石在流过调节阀时发出的声响。气蚀对调节阀及内件的损害也是很大的, 同时它也降低了调节阀的流通效能,就象闪蒸一样。
因此,气动调节阀哪家好,我们必须采取有效的措施来防止或者很大限度地减小闪蒸或气蚀的发生:
① 尽量将调节阀安装在系统的很低位置处,这样可以相对提高调节阀入口P1和出口P2的压力,② 在调节阀的上游或下游安装一个截止阀或者节流孔板来改变调节阀原有的安装压降特性(这种方法一般对于小流量情况比较有效),
③ 选用专门的反气蚀内件也可以有效地防止闪蒸或气蚀,它可以改变流体在调节阀内的流速变化,从而增加了内部压力;
④ 尽量选用材质较硬的调节阀,因为在发生气蚀时,对于这样的调节阀,它有一定的抗冲蚀性和耐磨性,可以在一定的条件下让气蚀存在,并且不会损坏调节阀的内 件。相反,对于软性材质的调节阀,由于它的抗冲蚀性和耐磨性较差,当发生气蚀时,调节阀的内部构件很快就会被磨损,因而无法在有气蚀的情况下正常工作。
总之,目前还没有什么工程材料能够适应严重条件下的气蚀情况,只能针对客观情况来综合分析,选择一种相对比较合理的解决办法。