调节阀使用的时候有时候会产生一定的噪音,这个时候很多消除噪音的方法就出来了。
1)消除共振噪音法
只有调节阀共振时,才有能量叠加而产生100多分贝的强烈噪音。有的表现为振动强烈,噪音不大,有的振动弱,而噪音却非常大;有的振动和噪音都较大。这种噪音产生一种单音调的声音,其频率一般为3000~7000赫兹。显然,消除共振,噪音自然随之消失。
2)消除汽蚀噪音法
汽蚀是主要的流体动力噪音源。空化时,汽泡破裂产生高速冲击,使其局部产生强烈湍流,并产生汽蚀噪音。这种噪音具有较宽的频率范围,产生格格声,与流体中含有砂石发出的声音相似。消除和减小汽蚀是消除和减小噪音的有效办法。
3)使用厚壁管线法
采用厚壁管是声路处理办法之一。使用薄壁可使噪音增加5分贝,采用厚壁管可使噪音降低0~20分贝。同一管径壁越厚,同一壁厚管径越大,降低噪音效果越好。如DN200管道,调节阀供应商,其壁厚分别为6.25、6.75、8、10、12.5、15、18、20、21.5mm时,可降低噪音分别为-3.5、-2(即增加)、0、3、6、8、11、13、14.5分贝。当然,壁越厚所付出的成本就越高。
4)采用吸音材料法
这也是一种较常见、有效的声路处理办法。可用吸音材料包住噪音源和阀后管线。必须指出,因噪音会经由流体流动而长距离传播,故吸音材料包到哪里,采用厚壁管至哪里,消除噪音的有效性就终止到哪里。这种办法适用于噪音不很高、管线不很长的情况,因为这是一种较费钱的办法。
随着现代科学技术和现代工业的飞速发展,流过高温流体的管路系统日益增加,高温调节阀的应用越来越广泛。 管路系统的要求及新材料和新工艺的出现,开拓了高温调节阀的应用领域。由于高温条件下材料的各种物理性能、机械性能都将发生变化,致使高温调节阀在结构设计和材料选择上与低温调节阀或常温调节阀相比具有很大的差别。经过我们的不断研究,总结出了高温调节阀制造中应注意的几个关键问题。
1 材料的机械性能
高温条件下,材料的力学性能将发生明显的变化。主要表现为两个方面,一是强度的改变;二是全属材料的变形性质的变化。图1为碳素钢在不同温度下的强度、塑性、弹性模量和波桑比的指标。
高温条件下材料的硬度也将发生变化,这对于调节阀门密封面来说是很重要的。调节阀的使用温度超过450℃, 设计时还得考虑材料的蠕变和断裂性能。高温条件下受载的阀门零件(应力值大于物理蠕变极限)除发生弹性变形外,还会发生不可回复的蠕变。即使应力低于相应 温度条件下材料的屈服限,也会发生这样的变形。当温度不变时,应力大者蠕变速度大;应力不变时,温度高 者蠕变速度高。由此可见,对于同一种材料,蠕变速度为应力和温度的函数。在高温调节阀制造中,调节阀哪家好,温度是由管路系统的参数决定的,材料的选择又受到介质的腐蚀 性能等条件的限制,调节阀质量好,所以常常碰到的问题是如何确定许用应力。如果按不发生蠕变的应力水平(物理蠕变极限)为条件设计调节阀的零件,雅安调节阀,将使得零件重而不经济。 所以在掌握材料的蠕变速度的基础上,要选择一个应力,使得调节阀在正常使用寿命下,总的蠕变不致于发生断裂或不致于因变形妨碍运动件相互间的运动。
应力水平的这择是以保证在使用寿命期内,材料的蠕变不致影响调节阀的使用功能为基本条件的。例如,用于石化高温管路系统的调节阀,要求在20000h内总 的应变值为1%;而核电站用调节阀则要求在300000h内总的应变值为1%。使用寿命不一样的调节阀,设计时应根据各自允许的蠕变速度来选择相应的许用 应力。
高温载荷作用下,调节阀零件的另一种失效形式是断裂。金属抵抗高温断裂的能力用“长用强度”或“持久强度”来衡量,材料的持久强度与使用温度、加力时间及 所受应力的大小有关。图4是铬钼钢的断裂应力与断裂时间的关系。调节阀零件往往会发生这样的情形:工作应力小于蠕变极限时,并不发生较大的蠕变,但零件却 在长期高温载荷下发生了断裂。因此,设计中应比较材料的蠕变性能和断裂性能,选择其中较低的许用应力。
2 热胀量的差别
导致热胀量差别的原因主要有材料热胀系数、零件承受热载的差别和零件所处约束条件的差别,这些差别在高温调节阀制造中应仔细考虑。当热态流体进人一个冷态 调节阀时,阀芯被热态流体所包围,而阀芯的散热仅靠与其相连接的具有较小横截面的阀杆,因此.阀芯能很快地达到管线流体的温度。阀座几乎是与阀芯同时加热 的,因阀座的散热条件较阀芯为好和阀体的线胀量常常小于阀座的径向膨账。其它零件也有类似的情况。因此,用于高温介质下的调节阀零件间的工作间隙应增大, 这样在实际工作温度下,防止了擦伤和卡死。间隙的增加量是由材料的线膨账系数、使用温度、应力等条件决定的。当然对于某些调节阀来说(如柱塞阀)、随着间 隙的增加,使得调节阀的有效使用温域变小,在室温或低温条件下会出现泄漏。