

当调节阀的操作温度远远低于冰点时,应采取特定的预防措施,电动调节阀价格低,在某些情况下,必须用特殊结构来满足操作要求。主要的问题是适当的选择结构材料,特别是在低温操作条件下(到-101℃)。深冷是指温度低于-101℃的生产操作,这时要考虑许多附加因素。
温度范围在-29℃-101℃之间时,对承受压力的部件要采用特殊的抗冲击碳钢,在-29℃-46℃之间时,一般采取LCB碳钢材料,到-101℃时,采用3.5%镍钢,这些阀门一般装有普通的长颈型上阀盖,在这样的温度范围,主要的目的是使进入系统的热量尽量减少,并防止填料函部分不至于因为太冷而使上阀盖的上面部分和填料函上的阀杆结冰。普通的长颈型上阀盖一般装在垂直位置,以减少操作流体本身的传热。
在深冷温度时,结构材料现在不采用碳钢,而是采用奥氏体不锈钢、青铜、蒙乃尔合金。在这样的温度范围内,调节阀的操作一般是控制极冷的气体和液化气,常常碰到的有:空气、氮气、氧气、氢气和氦气。
现在要特别注意长颈型上阀盖的结构。甚至当阀体材料是青铜时,长颈型上阀盖一般也采用奥氏体不锈钢以减少传热,要极为注意:液化气不能都集聚在上阀盖之间,因为关闭时不断的汽化有形成高压的危险。
是所有的情况下,调节阀要严格的绝热。在工厂低温区的的工艺设备配管和阀门常常在冷箱中。这种情况下,调节阀有一个特别长的上阀盖,它可以装在水平位置。直径较大的上阀盖部分用不锈钢制成,并从冷箱壁层中伸出来。这样,不涉及阀体就可以卸下包括阀芯和阀座的阀内件,阀体可以焊在系统中以减少冷箱本身的泄露。
一般,深冷调节阀在加工时,特别在装配时,对清洁度的要求更为严格。
在选择润滑剂时要注意,电动调节阀加工,在装配零件时可以用它来防止磨损,有许多润滑剂会固化或者变脆,而有许多完全不适用于流动的流体。为此,已经开发了许多用于这种场合的化合物,并已大量使用。还有许多需要特别注意的事项,例如:当调节液体氟时,它和任何碳氢化合物接触都会自燃;控制氧气时,无论是常温还是深冷,存在更普遍的问题,除了和某些杂质接触有自燃的可能性外,氧气还能助燃,如果一旦发生火灾,将烧毁整个管线系统,电动调节阀销售,大多数阀门公司对深冷调节阀都需要进行脱脂处理。






随着现代科学技术和现代工业的飞速发展,流过高温流体的管路系统日益增加,高温调节阀的应用越来越广泛。 管路系统的要求及新材料和新工艺的出现,开拓了高温调节阀的应用领域。由于高温条件下材料的各种物理性能、机械性能都将发生变化,致使高温调节阀在结构设计和材料选择上与低温调节阀或常温调节阀相比具有很大的差别。经过我们的不断研究,总结出了高温调节阀制造中应注意的几个关键问题。
1 材料的机械性能
高温条件下,材料的力学性能将发生明显的变化。主要表现为两个方面,一是强度的改变;二是全属材料的变形性质的变化。图1为碳素钢在不同温度下的强度、塑性、弹性模量和波桑比的指标。
高温条件下材料的硬度也将发生变化,这对于调节阀门密封面来说是很重要的。调节阀的使用温度超过450℃, 设计时还得考虑材料的蠕变和断裂性能。高温条件下受载的阀门零件(应力值大于物理蠕变极限)除发生弹性变形外,还会发生不可回复的蠕变。即使应力低于相应 温度条件下材料的屈服限,也会发生这样的变形。当温度不变时,应力大者蠕变速度大;应力不变时,温度高 者蠕变速度高。由此可见,对于同一种材料,蠕变速度为应力和温度的函数。在高温调节阀制造中,温度是由管路系统的参数决定的,材料的选择又受到介质的腐蚀 性能等条件的限制,所以常常碰到的问题是如何确定许用应力。如果按不发生蠕变的应力水平(物理蠕变极限)为条件设计调节阀的零件,将使得零件重而不经济。 所以在掌握材料的蠕变速度的基础上,要选择一个应力,使得调节阀在正常使用寿命下,总的蠕变不致于发生断裂或不致于因变形妨碍运动件相互间的运动。
应力水平的这择是以保证在使用寿命期内,材料的蠕变不致影响调节阀的使用功能为基本条件的。例如,用于石化高温管路系统的调节阀,要求在20000h内总 的应变值为1%;而核电站用调节阀则要求在300000h内总的应变值为1%。使用寿命不一样的调节阀,设计时应根据各自允许的蠕变速度来选择相应的许用 应力。
高温载荷作用下,辽宁电动调节阀,调节阀零件的另一种失效形式是断裂。金属抵抗高温断裂的能力用“长用强度”或“持久强度”来衡量,材料的持久强度与使用温度、加力时间及 所受应力的大小有关。图4是铬钼钢的断裂应力与断裂时间的关系。调节阀零件往往会发生这样的情形:工作应力小于蠕变极限时,并不发生较大的蠕变,但零件却 在长期高温载荷下发生了断裂。因此,设计中应比较材料的蠕变性能和断裂性能,选择其中较低的许用应力。
2 热胀量的差别
导致热胀量差别的原因主要有材料热胀系数、零件承受热载的差别和零件所处约束条件的差别,这些差别在高温调节阀制造中应仔细考虑。当热态流体进人一个冷态 调节阀时,阀芯被热态流体所包围,而阀芯的散热仅靠与其相连接的具有较小横截面的阀杆,因此.阀芯能很快地达到管线流体的温度。阀座几乎是与阀芯同时加热 的,因阀座的散热条件较阀芯为好和阀体的线胀量常常小于阀座的径向膨账。其它零件也有类似的情况。因此,用于高温介质下的调节阀零件间的工作间隙应增大, 这样在实际工作温度下,防止了擦伤和卡死。间隙的增加量是由材料的线膨账系数、使用温度、应力等条件决定的。当然对于某些调节阀来说(如柱塞阀)、随着间 隙的增加,使得调节阀的有效使用温域变小,在室温或低温条件下会出现泄漏。